Biotrickling filtration as sustainable technology for biogas upgrading to renewable

Eric Santos-Clouder, Alba Cabrera-Codony, Ellana Boarda Frederic Gich, Maria J. Martin ic.santos@udg.edu

28th June, 2019

7th International Conference on Sustainable Solid Waste

Management

ACCIÓ

Generalitat de Cataluny

tecnio

catalonia

Fins a 31/12/2019

CONTENTS

Introduction Objectives Materials & Methods Results Conclusions

h

Analytical procedures Gas streams - Gas

chromatography

 Flame Ionization detector (FID)

Silidoassanpeotrantetry (MS)

 Total Silica: Inductively coupled plasma-optical emission spectroscopy (ICP-OES)

NO3, NO2 a citie conformation apply with conductivity

detector

Biomass: Scanning electron microscopy (SEM)

Compoun d	Formula	MW [g mol [.] ¹]	Solubilit y [mg L ^{.1}]	Inlet conc. [mg m ^{.3}]
Hexane	H ₃ C	86	9.5	375 ± 18
Toluene	ō>	92	526	24 ± 2
Limonene	the second secon	136	13.8	220 ± 11
D4		297	0.056	54 ± 3
D5		371	0.017	102 ± 4
	1			

Introduction Objectives Materials & Methods Result Conclusions

BTF operation - stage I:

RArage 4% removal efficiency SEM analysis of the lava rock

- BTF operation multicompound
- stage II:

Limonene and toluene 100% RE at all EBRTs

Max. 16% RE of hexane at longest EBRT

D5 RE from 15 to 37% at EBRT 4 to 14.5 min

D4 removal ranged 8-14%

Introduction 🕜 Objectives Materials & Methods 🔃 Result 🗐 Conclusions

8

Introduction Objectives Materials & Methods Result Conclusions

METABOLITES IDENTIFICATION

Metabolite	Formula он	MW [g mol ^{.1}]	Analytical ions m/z [abundance]
Dimethylsilan ediol [DMSD]	- si OH	92	77 [99.9] 45 [14.6] 78 [6.6]
Tetramethyl- 1,3- disiloxanediol		166	133 [99.9] 151 [71.2] 135 [22.6]
Hexamethyl- 1,5- trisiloxanediol	H ₃ C Si O O H ₃ C I CH ₃ HO CH ₃	240	207 [99.9] 208 [21.1] 209 [17.0]
2-careen		136	93 [99.9] 121 [96.8] 136 [66.9]
α-terpinene	\rightarrow	136	121 [99.9] 93 [84.7] 136 [42.6]
P-cymene		134	119 [99.9] 91 [34.7] 134 [23.8]

- A <u>complete removal</u> of toluene and limonene was accomplished by an anoxic lab-scale BTF inoculated with *Pseudomonas sp*. **even at short EBRTs**.
- The removal of **hexane, D4 and D5** was correlated to their Henry's law coefficients, which indicated that <u>mass transfer</u> limitations **challenged** their abatement in the BTF.
- The supplementation of the BTF packing bed with **Activated Carbon** <u>enhanced</u> the transference of **hexane and D5** to the microbial community.
- AC supplementation enabled BTF operation at reduced EBRTS while displaying a high to robustness towards interruptions in the trickling irrigation.

潇	Introduction	Ø 0	bjectives	Materials &	x Methods	Results	¥= **=	Conclusio
---	--------------	------------	-----------	-------------	-----------	---------	-----------	-----------

Biotrickling filtration as sustainable technology for biogas upgrading to renewable Thank you for Ucclattention!

28th June, 2019

7th International Conference on Sustainable Solid Waste

Management

tecnio

catalonia

Fins a 31/12/2019

ACCIÓ

Generalitat de Cataluny